Lightweight Ground Texture Localization

Aaron Wilhelm! and Nils Napp!

Abstract— We present a lightweight ground texture based
localization algorithm (L-GROUT) that improves the state of
the art in performance and can be run in real-time on single
board computers without GPU acceleration. Such computers
are ubiquitous on small indoor robots and thus this work
enables high-precision, millimeter-level localization without
instrumenting, marking, or modifying the environment. The
key innovations are an improved database feature extraction
algorithm, a dimensionality reduction method based on locality
preserving projections (LPP) that can accommodate faster-to-
compute binary features, and an improved spatial filtering
step that better preserves performance when the databases
are tuned for lightweight applications. We demonstrate the
approach by running the whole system on a low-cost single
board computer (Raspberry Pi 4) to produce global localization
estimates at greater than 4Hz on an outdoor asphalt dataset.

I. INTRODUCTION

The ability to localize is fundamentally important to
mobile robots, and as such there is a vast body of literature
on localization algorithms, sensors, and systems [1]. For
many application scenarios off-the-shelf solutions exist and
today, most research is focused on applications where these
methods are difficult or impractical to apply. This work
specifically focuses on low-cost, high-accuracy localization
for ground robots based on ground texture using general-
purpose cameras. The applications of such systems can be
both in GPS denied outdoor environments (where GPS-
RTK approaches are infeasible) or for non-instrumented
indoor environments, such as navigation around hallways,
warehouses, or airports where installing motion capture
systems would be impractical or prohibitively expensive.
In addition to low deployment overhead, ground texture
localization has different failure modes than localization
based on other sensors that make it particularly attractive
for large-scale indoor localization in busy and dynamic
environments. Since texture images are taken by a downward
facing camera that can be under the robot, lighting can be
carefully controlled and the camera’s view is guaranteed to
be unobscured even in crowded spaces. Laser range finders
and/or sideways looking cameras, in contrast, are difficult to
use in such busy spaces. Early SLAM systems attempted to
overcome issues in dynamic indoor scenes by using upward
facing cameras [2], but the larger distance to the surface
results in significantly lower position resolution, and ceilings
seem to have a significant amount of perceptual aliasing
compared to texture based approaches [3].

Modern localization and SLAM systems typically use a
combination of proprioreceptive and exteroreceptive sensors

1Electrical and Computer Engineering, Cornell University, Ithaca, NY
14853, USA. ajw344@cornell.edu, nnappl@cornell.edu

for better localization. These systems use sensor fusion,
taking advantage of inexpensive MEMS-based accelerome-
ters and gyroscopes for high-speed pose-estimates combined
with exteroreceptive sensors to prevent drift and provide
a transformation estimate relative to an external map. The
texture localization methods presented here address the ex-
teroreceptive portion of these systems and provide absolute
global localization estimates at a rate of several Hz, which
is sufficiently fast to correct the accumulated drift of IMU-
based pose estimates.

Previous works on ground texture based localization
focused on performance and consequently leveraged fast
CPUs, GPU acceleration, large memory access, and high
quality cameras [3], [4], [5], [6]. However, one of the
most promising aspects of ground texture localization is
that it can achieve high-precision localization with minimal
infrastructure overhead and potentially provide robust, high-
quality localization for inexpensive and thus resource con-
strained robots. To address this gap, we present a lightweight
ground texture based localization algorithm (L-GROUT).
L-GROUT makes several modifications to the state-of-the-
art localization technique first presented in MicroGPS, a
seminal work that paired image feature matching with a spa-
tial voting system to globally localize [3]. Our adaptations
not only improve global localization accuracy on several
textures, but they also make the algorithm more lightweight
and thus ready to deploy on resource constrained systems.
To demonstrate this, we test our algorithm with decreasing
feature dimension lengths, as is required for lightweight
applications.

Another underexplored aspect of implementing ground
texture localization algorithms on cheaper robots is the
camera quality. As the camera only needs to see the ground,
previous works releasing datasets have built an enclosed
lighting system to help control exposure conditions [3],
[4]. These controlled conditions in theory enable robot
designers to select cheaper cameras, however, a main en-
gineering trade-off still exists between image resolution
(the greater the resolution the higher feature quality and
hence accuracy) and recording frequency (higher frames
per second result in less motion blur). Thus, to evaluate L-
GROUT’s performance with lower quality cameras, we show
high robustness when testing our algorithm with decreasing
image resolutions. Finally, to illustrate the high performance
of L-GROUT under real-world constraints, we timed L-
GROUT on a modern computer without GPU acceleration
and a Raspberry Pi 4, a popular platform for educational
and DIY robotics.



Database Preprocessing

i *
FeatureExraC|n o . FLANN D.

SEEE

Ground Image Capture Feature Extraction

Estimated Query
Image Pose
via RANSAC

Spatial Voting
via KD Trees*

©)

Dimension
Reduction*

Fig. 1: The L-GROUT localization pipeline. Steps marked with an asterisk are changes made to the original pipeline
introduced by MicroGPS [3]. First an offline map is constructed by extracting keypoints from database images and their
feature vectors are stored in a set of FLANN databases [7]. At query time, keypoints are extracted from the query image
and their features are used to query the database for the approximate nearest matches. Each database match votes for the
estimated origin of the query image and the points in the highest density cluster (as determined by a radius search with a
KD Tree) are selected as likely true positives. Finally, RANSAC is performed on the filtered set of query keypoints and
their database matches to estimate the pose of the query image.

II. RELATED WORKS

Early work on using ground patterns to localize robots
used dots on a linoleum floor and then applied ideas from
star tracking to uniquely identify location-based patterns [8].
However, this approach only works on floor types that
have randomly spaced, clearly detectable and identifiable
features of the right density and it is not clear how this
translates to more generic textures. Another stream of work
for camera based localization and place recognition tries
to learn features from data to create a visual vocabulary
based on bag of words (BoW) representations of particular
images and create topological maps over large areas [9].
These types of general-purpose place recognition methods
are often used as building blocks in SLAM systems to
perform place recognition and loop closure [10], [11]. The
bag of words approach is used in StreetMap, one of the
first papers for ground-based texture localization [5]. In their
mapping pipeline, Chen et al. use a BoW built from ground
image features to retrieve similar images from a map and
localize the robot from the relative transformation. Although
out-of-the-box application of BoW performs well on smaller
ground texture datasets, subsequent work showed that this
technique does not scale well to larger map areas [4].

In MicroGPS, Zhang et al. demonstrate an algorithm
for global localization using approximate nearest neighbor
(ANN) feature matching and a spatial voting system [3].
First, for each database image SIFT features [12] are ex-
tracted using SIFTGPU [13]. Of all the features extracted,
50 random features per image are selected and added to
the database. Exploiting the fact that image features will
be the same scale since camera distance from the ground
is constant, Zhang et al. divide the main database into ten
roughly equal sized ANN search structures using the Fast Li-
brary for Approximate Nearest Neighbors (FLANN) [7]. For
speed up, the feature dimensions are reduced via Principal
Component Analysis (PCA) that is derived from a training

set. At query time, all SIFT features are extracted from the
image and for each feature the ANN from the database is
found. Next, a voting system is implemented where each
database keypoint votes for what its estimation of the query
image origin. Votes are binned via a fine resolution grid and
RANSAC [14] is run on the feature matches to determine
the estimated pose of the query image. Estimated poses
are deemed accurate if they are within 4.8mm and 1.5
degrees of ground truth, a precise standard also adopted by
later work [4], [15]. Along with their work, Zhang et al.
released a ground texture localization dataset for use by fu-
ture researchers. Until now, MicroGPS offers state-of-the-art
accuracy for ground texture localization. While MicroGPS is
able to exploit GPU acceleration for SIFT feature extraction,
overall the algorithm is computationally expensive, making
it impractical to apply on resource constrained hardware
systems that do not have GPUs or high-performance CPUs.

Ground Texture Based Localization (GTBL) used a sim-
ilar pipeline to MicroGPS but instead used LATCH binary
features and introduced identity matching, where feature de-
scriptors need to match exactly, with a database implementa-
tion [15]. By only considering nearby points in the database
when a prior is available, GTBL was able to localize quicker
than MicroGPS, but observed slower runtimes when no
prior is available. Although GTBL had high accuracy than
MicroGPS on smaller datasets, later testing by Schmid et
al. showed that GTBL’s accuracy did not scale well as the
size of the dataset increased [4]. Deep Metric Learning
for Ground Images attempts to simplify the localization
problem by first using deep learning to perform similar
image retrieval from the database [16]. Radhakrishnan et al.
trained and deployed a Siamese CNN architecture to encode
ground texture images. At localization time a query image
is encoded by the network and the K most similar images in
the database are found, their keypoints returned to be used
for localization. When coupled with a localization algorithm



this technique has been shown to increase the localization
accuracy [4], but the localization algorithm needs to be able
to filter the database to keypoints that are only from nearby
images. This means that the DML technique is incompatible
with localization algorithms that do not keep the relationship
between images and their keypoints in the database, such as
MicroGPS [3], [16].

HD Ground released an extensive dataset that focused on
four main textures (asphalt, carpet, cobblestone, laminate)
and included additional textures and ground conditions such
as wet and dirty [4]. Schmid et al. then tested Ranger,
StreetMap, and GTBL on a variety of tests using the new
dataset. Most recently SLAM was demonstrated for ground
texture localization that uses local odometry information
from the ground facing camera [6]. Loop closures are
detected with a three part approach that checks for 1) VBoW
similarity, 2) direct keypoint matches, and 3) uncertainty
determined from the covariance matrix of the transformation
calculated with the GTSAM library. While the algorihthm
has been shown to perform well on the smaller MicroGPS
dataset, it has yet to be explored how it performs on larger
datasets such as HD Ground.

In contrast to these previous approaches, L-GROUT fo-
cuses on retaining the high accuracy of MicroGPS while
improving upon speed and resource considerations. To ac-
complish this, our approach utilizes a modified database
extraction method that incorporates highest response key-
points, Locality Preserving Projections (LPP) to accommo-
date faster-to-compute binary features, and a KD tree [17]
for spatial filtering. We extensively test our algorithm under
conditions that would be required for resource constrained
platforms. Finally, we demonstrate the efficacy of our ap-
proach on the Raspberry Pi 4, a single board computer with
limited memory and processing power.

ITII. SYSTEM

Figure 1 provides a system overview of L-GROUT. Of
particular note are the three ways L-GROUT improves
upon the original MicroGPS algorithm: database feature
extraction, LPP dimension reduction, and KD tree voting
for spatial filtering. Below we explain these changes and
their significance in more detail.

A. Database Feature Extraction

When building their database, the authors of MicroGPS
choose to randomly select 50 keypoints from the 1,000-
2,000 keypoints extracted per database image [3]. They
report that the high response features are just as likely to be
due to noise, dust, etc. as they are to be prominent features.
Although we concur that some of the most prominent fea-
tures detected are not reliable, from our own experiments we
have observed that some of the highest response keypoints
are in fact high quality keypoints. We also observe a similar
phenomenon with the largest keypoints in the image, which
tend to be more reliable than randomly selected keypoints.

Therefore, we adopt a hybrid approach where we extract
1,000 keypoints, storing the 10 keypoints with the largest

size and 40 other random keypoints. We choose to limit
the number of extracted keypoints to 1,000 to keep our
method scalable, especially when using keypoint extractors
such as ORB (described below) that can have more than
20,000 keypoints per image. We keep a portion of the largest
keypoints instead of the greatest intensity keypoints as the
larger keypoints perform slightly better across the textures.
Overall, this hybrid keypoint selection technique improves
database feature matching robustness.

It should be noted that although one can increase local-
ization accuracy if more keypoints are stored per database
image, this also increases the memory cost of the database
and the computation time of queries. The ideal number of
keypoints depends upon the memory constraints, the target
query speed, and the desired localization accuracy and is
thus application dependent. To make a more relevant com-
parison to MicroGPS, for our experiments we have chosen to
limit both algorithms to extracting 1,000 keypoints, saving
50 of those to the database per image.

B. Locality Preserving Projections

The authors of MicroGPS use PCA [18] to perform
feature dimension reduction. However, variance is ill-defined
for binary numbers, rendering PCA only suitable for feature
vectors in the real number space.

For our algorithm, we instead adopt Locality Preserving
Projections [19]. LPP is an unsupervised dimensionality
reduction technique that linearly projects high dimensional
features into a low dimensional subspace while trying to pre-
serve neighborhood relationships. LPP constructs a weighted
graph representing neighborhood information and from the
graph’s Laplacian matrix calculates a linear transformation
to a lower dimensional subspace. Similarly to the work
of [20], we simply use the e-neighborhood procedure to gen-
erate the adjacency graph and keep the graph unweighted.

A significant advantage of LPP over PCA is that it is
compatible with binary feature vectors. As many binary
keypoint and feature detectors such as ORB [21] are con-
siderably quicker than their real number counterparts, the
use of LPP makes the feature extraction phase around twice
as fast. Feature extraction time is a substantial part of the
image processing and localization pipeline, so this results in
a significant overall speedup.

C. KD Tree Voting for Spatial Filtering

Similar to MicroGPS, we adopt a voting mechanism to
determine the spatial location of the query image. This stage
is critical as we need to filter out a handful of true positive
database matches from just under a thousand false positive
matches. While MicroGPS presents an effective binning
method for spatial filtering to find the true positives, below
we present an updated method that improves accuracy at a
similar computation cost.

First, we identify that although efficient, the binning
approach of MicroGPS can lead to missed matches. In the
case where the true image origin lies on the edge or corner
of a bin, the votes can be divided across several bins. This



not only causes the true peak to be diluted, meaning that
other bins of noisy votes are more likely to be selected, but
it also means that fewer true positive database matches are
selected for the RANSAC phase. To address this, we instead
use a KD tree [17] approach with an additional filtering step
based upon the estimated orientation of the query image.

A KD tree is constructed from the keypoint (x,y) coor-
dinates of all of the estimated query image origins calcu-
lated from each of the potential database matches. As the
number of points is fairly small and are two dimensional,
the computation time to construct and search the KD tree
is minimal. Then a radius search around each point is
conducted, with the search radius equal to a translation
error (in our experiments we chose 20mm). The members
of the highest density cluster, i.e. the neighbors of the
point with the highest neighbor count, are considered correct
matches since they all voted for a similar estimated location.
However, as an additional filtering step, we only count points
as neighbors if the estimated pose of the query image is
also within an orientation threshold, meaning that the two
estimated poses match both in translation and orientation.
From there RANSAC is conducted on the selected points
to determine the final estimated image transformation and
hence localize the robots. The KD Tree and the additional
orientation check on the estimated help contribute to higher
localization accuracy.

IV. EXPERIMENTS
A. Setup

We tested our algorithm using the four main textures
(asphalt, carpet, cobblestone, laminate) from the HD Ground
dataset. HD Ground provides training patches for the four
main textures and these were combined to train texture-
specific PCA and LPP vectors. The bin size for voting for
MicroGPS and the vote search radius for L-GROUT were
selected to achieve optimal performance.

To get a more fair accuracy comparison, we make one
minor modification to the feature extraction process for
MicroGPS. In the original paper, all features that were
extracted from test images are used to query the database.
With larger image resolutions this can result in more than
8,000 features per test image, which raises the localization
accuracy but at a high computation and memory cost. For
a more direct comparison to our algorithm, we limit both
algorithms to exctracting 1,000 keypoints, saving 50 of those
to the database during the mapping phase and at query time
using only the top 1,000 keypoints for localization. This
number was chosen since the authors report 1,000-2,000
extracted features per image when originally testing and
optimizing their algorithm.

In our testing below we follow the accuracy guidelines
first established in MicroGPS and later used by GTBL and
HD Ground [3], [4], [15]. That is, a localization attempt is
considered accurate if the estimated pose is within 4.8mm
of translation and 1.5 degrees of rotation of the ground truth
pose. We use the ground truths provided in the HD Ground
dataset.

B. Global Localization Accuracy vs Time

Asphalt Global Localization Accuracy Carpet Global Localization Accuracy

== =

°
°

°
®
°
B

°
b
°
b

°
S
°
S

= L:GROUT (SIFT) ~
= L-GROUT (ORB)
MicroGPS (SIFT)

= L-GROUT (SIFT)
= L-GROUT (ORB)
MicroGPS (SIFT)

°
®

Global Localization Accuracy
°
9

Global Localization Accuracy

—— StreetMap DML

= cTaLomL \\/

0.0 0.0
2020-10 2020-11 2020-12 2021-01 2021-02 2021-03 2020-10 2020-11 2020-12 202101 202102 2021-03

Test Set Recording Date Test Set Recording Date

i StreetMap DML
—— GTBL DML

C: Global L

=

o Laminate Global Localization Accuracy
b P

N N

-

°
Y
°
Y

°
S

GROUT (SIFT)

0.2 = L-GROUT (ORB) _{ \
MicroGPS (SIFT)

—— StreetMap DML

—— GTBL DML

i T)
L-GROUT (ORB)
MicroGPS (SIFT)
—— StreetMap DML
—— GTBL DML

°

2

Global Localization Accuracy

Global Localization Accuracy

0.0

0.0
202010 202011 202012 2021-01 2021-02 2021-03
Test Set Recording Date

202011 202012 202101 2021-02 2021-03
Test Set Recording Date

Fig. 2: The performance of ground texture based global
localization algorithms over time on the four main textures
from the HD Ground dataset [4]. The methods include L-
GROUT with SIFT and ORB features, StreetMap Deep
Metric Learning (DML), Ground Texture Based Localiza-
tion (GTBL) DML, and MicroGPS optimized for each
texture [3], [5], [15], [16]. Each dashed vertical line marks
the test set recording date and the bold vertical line marks
the database recording date.

For the four main textures in the HD Ground dataset
we graph the performance of our algorithm and MicroGPS
across the test datasets taken at different times. We include
both a high accuracy version of L-GROUT that uses SIFT
features with PCA and a faster L-GROUT version that
uses ORB features with LPP. Both L-GROUT versions and
MicroGPS use 16 dimensional feature vectors. To help con-
textualize the results with other algorithms, we include the
accuracies for StreetMap Deep Metric Learning (DML) and
Ground Texture Based Learning (GTBL) DML as reported
in the HD Ground paper [4]. Each algorithm is run on the
optimal image resolution that yields the highest accuracy. L-
GROUT and MicroGPS use 1000 features as reasoned above
and StreetMap DML and GTBL DML use the number of
features that give the highest success rate.

As can be seen in Figure 2, across most of the textures
L-GROUT with SIFT features is the highest performing
algorithm, with the only exception being the laminate texture
where StreetMap DML performs slightly better. L-GROUT
with ORB performs similarly to MicroGPS and L-GROUT
with SIFT features for the carpet dataset, but has a slightly
lower accuracy for the other datasets. This is primarily due
to a lower reliability of ORB features on those surfaces.
Since L-GROUT and MicroGPS overall perform substan-
tially better than the other algorithms, we chose to focus
only on these algorithms for our following experiments.



We also make the observation that texture type has a larger
impact on localization accuracy than the size of the database
floor area coverage, as our algorithm and MicroGPS perform
worst on laminate even though laminate is the smallest sized
dataset (16.18 m? for laminate versus 106.12 m?, 90.15 m?,
59.28 m? for asphalt, carpet, and cobblestone, respectively).

C. Feature Dimension Length vs Global Localization Accu-
racy
Asphalt Global Localization Accuracy

vs Feature Dimension Lengths
T e =

Asphalt Total Global Localization Accuracy
vs Feature Dimension Length

°
°

°
@
°
B

°
Y
°
EY

ROUT (SIFT) -
~— L-GROUT (ORB) ™+ .,
MicroGPS (SIFT)
—— MicroGPS* (ORB) *,
— d=16 o, e
- d=12
- d=8

°
S
°
&

°
0
°
0

L-GROUT (SIFT)

L-GROUT (ORB)

MicroGPS (SIFT)
@ MicroGPs* (ORB)

Global Localization Accuracy

Total Global Localization Accuracy

°
B
°

.0 T
202010 2020-11 2020-12 2021-01 2021-02 202103
Test Set Recording Date

8 9 10 11 12 13 14 15 16
Feature Dimension Length

Carpet Total Global Localization Accuracy

Carpet Global Localization Accuracy
vs Feature Di Length i

vs Feature Di Lengths

°

°

=0 >0

- e A

°
@
°
@

°
b
°
b

°
S
°
S

—— L-GROUT (SIFT)
~—— L-GROUT (ORB)
icro

°
N
°
®

L-GROUT (SIFT)

L-GROUT (ORB)

MicroGPS (SIFT)
@ MicroGPs* (ORE)

Global Localization Accuracy

Total Global Localization Accuracy

°
°

0.0
202010 202011 202012 2021-01 2021-02 2021-03
Test Set Recording Date

8 9 10 11 12 13 1a 15 16
Feature Dimension Length

Fig. 3: The performance of L-GROUT and MicroGPS using
various feature dimension lengths for both asphalt and carpet
ground textures. For the left graphs, the accuracy is the
global localization percentage of test images across all test
sets for the respective texture. On the right, the global
localization accuracy vs time for both textures was graphed
for 16, 12, and 8 feature dimension lengths. *Note that
MicroGPS does not originally support binary features, but
for comparison LPP was used for dimension reduction to
make MicroGPS compatible with binary features.

We next wanted to explore how MicroGPS and our
algorithm perform on memory constrained systems. For both
MicroGPS and our pipeline, the main memory cost is from
storing the keypoint features and the FLANN databases. As
the extracted feature dimensions decrease in size, so does the
memory requirement of the algorithms. With this in mind,
we tested both algorithms across a variety of feature dimen-
sion lengths with both SIFT and ORB features. Although
MicroGPS cannot directly use binary features since it uses
PCA, we chose to slightly modify their pipeline to use LPP
and thus ORB features. This allows for a better comparison
of the L-GROUT and MicroGPS to show how our novel
database feature extraction approach and KD Tree voting
technique contribute to the overall robustness of L-GROUT.
For each algorithm, when using SIFT features we used PCA
and adjusted the number of principal components of the
feature vectors that we kept. Similarly, when employing

ORB features we applied LPP and varied the number of
projections that we preserved. Each data point represents
the respective algorithm’s localization accuracy across all
recorded regular test datasets for that texture.

Figure 3 shows our results. Overall, the localization ac-
curacy of both algorithms decrease as the number of feature
dimensions decrease. However, across all feature dimension
lengths our algorithm performs better than MicroGPS for
the same feature extraction method. This indicates that our
algorithm would be preferable on memory-constrained sys-
tems where one would have to decrease feature dimension
length.

D. Image Resolution vs Global Localization Accuracy

Next, to explore how a cheaper camera might impact
the algorithms’ performance, we determined the effect of
image resolution on the algorithms. Once again we tested
both MicroGPS and our algorithm with both SIFT and ORB
features, using PCA for SIFT features and LPP for ORB fea-
tures. Similar to before, we modified the MicroGPS pipeline
to use LPP to give insight on how the database feature
extraction and voting procedures affect the robustness of
MicroGPS and L-GROUT.

As can be seen in Figure 4, for each image resolution L-
GROUT has a higher localization accuracy than MicroGPS
with the same feature type. In general, as the image res-
olution decreases the localization accuracy does as well.
However, L-GROUT is able to maintain a higher image
resolution versus accuracy tradeoff than MicroGPS. This
indicates that on lower quality cameras our algorithm would
be a better choice.

Asphalt Total Global Localization Accuracy
vs Image Downsample Factor

Carpet Total Global Localization Accuracy
vs Image

At}

°
°

&

e

°
®
°
@

°
>

°
&

°

.4

02 :g: L-GROUT (SIFT)
L-GROUT (ORB)

MicroGPS (SIFT)

@~ MicroGPs* (ORB)

°
S

°
0

L-GROUT (SIFT)

L-GROUT (ORB)

MicroGPS (SIFT)
@~ MicroGPS* (ORB)

Total Global Localization Accuracy

Total Global Localization Accuracy

°
°

02 04 06 o8 10
Image Downsample Factor

02 04 06 08 10
Image Downsample Factor

Fig. 4: The performance of our algorithm and MicroGPS
across various image resolutions. As the image resolution
decreases, the accuracy of both methods decrease as ex-
pected. However, our algorithm maintains a higher accuracy
overall, suggesting that if a cheaper camera is used our
algorithm would be a better choice than MicroGPS. *Note
that MicroGPS does not originally support binary features,
but for comparison LPP was used for dimension reduction
to make MicroGPS compatible with binary features.

E. Time Comparison

Finally, we present a timing comparison between Mi-
croGPS and L-GROUT with both SIFT and ORB features
in Table I and Table II. To demonstrate how the algorithms



TABLE I: The timing characteristics of MicroGPS versus L-GROUT with SIFT features and with ORB features on a
modern computer without GPU acceleration. The mean and standard deviation of the algorithms’ timings for 100 randomly
selected asphalt images are recorded, with the quickest mean execution times bolded. Note that overhead sections common

with all algorithms are not included in the table.

l Algorithm “ Feature Extraction Time (ms) ‘ DB Query Time (ms) ‘ Voting Time (ms) ‘ RANSAC Localization (ms) “ Total (ms) ‘
MicroGPS 58.51+ 4.3 3.5+0.2 0.8+ 0.0 4.1+04 85.6 - 4.2
L-GROUT (SIFT) 56.7 £ 2.1 3.6 0.1 3.1+04 4.3+0.4 86.7 + 2.1
L-GROUT (ORB) 134+1.5 4.1+0.1 3.0+£0.2 4.0+ 0.7 43.6 = 2.3

TABLE II: The timing characteristics of MicroGPS versus L-GROUT with SIFT features and with ORB features on a
Raspberry Pi 4. The mean and standard deviation of the algorithms’ timings for 100 randomly selected asphalt images are
recorded, with the quickest mean execution times bolded. Note that overhead sections common with all algorithms are not

included in the table.

l Algorithm “ Feature Extraction Time (ms) ‘ DB Query Time (ms) ‘ Voting Time (ms) ‘ RANSAC Localization (ms) “ Total (ms) ‘
MicroGPS 348.5 +10.8 56.3 £ 6.8 2.5+0.1 15.6 1.4 491.3 +12.6
L-GROUT (SIFT) 349.3 £ 5.7 55.7 £ 9.3 13.6 £1.8 16.4+1.4 503.2 +10.9
L-GROUT (ORB) 71.5+3.5 59.8 £ 6.7 124+1.4 149+ 28 226.9 £ 8.2

behave on platforms with different hardware resources, we
timed the algorithms on a modern computer without GPU
acceleration (Intel Core i7-10700 CPU @ 2.90GHz, 16 GB
RAM) and a Raspberry Pi 4 (Broadcom BCM2711B0 CPU
@ 1.5GHz, 4 GB RAM). Although the Raspberry Pi 4
has a Broadcom VideoCore VI GPU, it is not compatible
with Nvidia CUDA library and thus is incapable of running
GPU speedup libraries like GPUSIFT. The Raspberry Pi 4
has limited computing and memory resources, especially
when compared to previous testing systems that had Intel
7 processors, 64 GB of RAM, Nvidia GPUs, etc. [3], [4],
[5], [6]. With this in mind, the Raspberry Pi 4 provides
an interesting benchmark to demonstrate how L-GROUT
performs versus MicroGPS on resource constrained systems
that are unable to use GPU acceleration.

As MicroGPS is not immediately compatible with binary
features such as ORB features, we have only tested it with
SIFT features. We executed L-GROUT with both SIFT and
ORB features to show how the feature type and the modifi-
cations of the L-GROUT algorithm affect the computation
time. For the experiment, the algorithms’ perforomance was
evaluated on 100 random asphalt test images. We chose
asphalt as it is the dataset with the largest area and very
relevant to a wide range of applications for mobile robots.
Each image was downsampled by a scaling factor of 0.5 as
at this scaling factor the overall global localization accuracy
does not yet deteriorate. To avoid interference from other
processes running on the computers, the minimum run time
for each image over 10 trials was recorded. Then, across the
100 images the overall mean and standard deviation were
calculated for each section of the algorithms.

The timing characteristics on the modern computer with-
out GPU acceleration are summarized in Table 1. Overall,
L-GROUT with ORB features takes 43.6 ms, about half of
the execution time on average required by MicroGPS (85.6
ms) and L-GROUT with SIFT features (86.7 ms). This speed
advantage is primarily due to the quicker feature extraction
for ORB features vs SIFT features. L-GROUT with SIFT

and MicroGPS have similar timing characteristics, which
is impressive as L-GROUT with SIFT yields a higher
localization accuracy as shown in the previous sections.

We also demonstrate the performance of each algorithm
on a Raspberry Pi 4. As can be seen from Table II, L-
GROUT with ORB features is the fastest algorithm. Even
with the limited resources of the Raspberry Pi 4, on average
it takes L-GROUT with ORB 226.9 ms to localize a query
image. This is more than twice as fast as the average timings
of MicroGPS and L-GROUT with SIFT, 491.3 ms and
503.2 ms respectively. Once again, L-GROUT with SIFT
has similar timing characteristics to MicroGPS with the main
difference between their timings arising from L-GROUT’s
KD Tree voting technique. As shown in previous sections,
the KD Tree voting enables a higher localization accuracy,
which at this image scale only contributes to less than
2.5% additional computation time for the entire localization
pipeline when compared to MicroGPS.

V. CONCLUSION

We present a novel algorithm for global localization
from ground textures captured with a downward facing
camera. When using SIFT features, our algorithm has state-
of-the-art global localization accuracy and even when using
faster-to-compute but lower performance ORB features, it
outperforms several previous localization algorithms. We
demonstrate that these accuracy improvements are especially
prominent as the feature dimensions and image resolutions
are decreased, making our algorithm a superior choice for
resource constrained platforms such as the Raspberry Pi. We
plan to add a mapping component and release this system as
part of an easy to deploy open-source localization system.
The current SIFT/ORB features perform very well on low-
pile carpet and asphalt, but we plan to include other indoor
ground textures and potentially optimize keypoint detectors
and descriptors for use in the L-GROUT system.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332, 2016.
S.-Y. Hwang and J.-B. Song, “Monocular vision-based slam in
indoor environment using corner, lamp, and door features from
upward-looking camera,” IEEE Transactions on Industrial Electron-
ics, vol. 58, no. 10, pp. 48044812, 2011.

L. Zhang, A. Finkelstein, and S. Rusinkiewicz, “High-precision
localization using ground texture,” in 2019 International Conference
on Robotics and Automation (ICRA), pp. 6381-6387, IEEE, 2019.
J. F. Schmid, S. F. Simon, R. Radhakrishnan, S. Frintrop, and
R. Mester, “Hd ground-a database for ground texture based localiza-
tion,” in 2022 International Conference on Robotics and Automation
(ICRA), pp. 7628-7634, IEEE, 2022.

X. Chen, A. S. Vempati, and P. Beardsley, “Streetmap-mapping and
localization on ground planes using a downward facing camera,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1672-1679, IEEE, 2018.

K. M. Hart, B. Englot, R. P. O’Shea, J. D. Kelly, and D. Martinez,
“Monocular simultaneous localization and mapping using ground
textures,” arXiv preprint arXiv:2303.05946, 2023.

M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.,” VISAPP (1), vol. 2, no. 331-340,
p- 2, 2009.

Y. Fukase, H. Kanamori, and S. Kimura, “Self-localization system for
robots using random dot floor patterns,” in Proceedings of the 30th
International Symposium on Automation and Robotics in Construction
and Mining (ISARC 2013): Building the Future in Automation and
Robotics (F. Hassani, O. Moselhi, and C. Haas, eds.), (Montreal,
Canada), pp. 304-312, International Association for Automation and
Robotics in Construction (IAARC), August 2013.

M. Cummins and P. Newman, “FAB-MAP: Appearance-Based Place
Recognition and Mapping using a Learned Visual Vocabulary Model,”
in 27th Intl Conf. on Machine Learning (ICML2010), 2010.

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and
G. Wyeth, “Openfabmap: An open source toolbox for appearance-
based loop closure detection,” in 2012 IEEE International Conference
on Robotics and Automation, pp. 4730-4735, 2012.

D. Gaélvez-Lépez and J. D. Tardés, “Bags of binary words for
fast place recognition in image sequences,” IEEE Transactions on
Robotics, vol. 28, pp. 1188-1197, October 2012.

D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the seventh IEEE international conference on
computer vision, vol. 2, pp. 1150-1157, Ieee, 1999.

C. Wu, “Siftgpu: A gpu implementation of sift,” 2007.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395, 1981.

J. F. Schmid, S. F. Simon, and R. Mester, “Ground texture based
localization using compact binary descriptors,” in 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 1315—
1321, IEEE, 2020.

R. Radhakrishnan, J. F. Schmid, R. Scholz, and L. Schmidt-
Thieme, “Deep metric learning for ground images,” arXiv preprint
arXiv:2109.01569, 2021.

C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1-8, IEEE, 2008.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4,
pp. 433-459, 2010.

X. He and P. Niyogi, “Locality preserving projections,” Advances in
neural information processing systems, vol. 16, 2003.

B. Fan, Q. Kong, B. Zhang, H. Liu, C. Pan, and J. Lu, “Efficient
nearest neighbor search in high dimensional hamming space,” Pattern
Recognition, vol. 99, p. 107082, 2020.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An
efficient alternative to sift or surf,” in 2011 International conference
on computer vision, pp. 2564-2571, Ieee, 2011.



